Présente par Yannick Moy

SPARK — Flow Analysis

procedure Stabilize (Mode : 1n Mode T;

Success : out Boolean)

with Global => (Input => (Accel, Giro),
In Out => Rotors);

Program
implements
specification

Specification Flow

of effects analysis

SPARK — Proof

procedure Stabilize (Mode : 1n Mode T;
Success : out Boolean)
with Pre => Mode /= Off,
Post => (1f Success then
Delta Change (Rotors'Old, Rotors));

Program
implements
specification

Specification

of properties

Formal Program Verification

2002
Airbus

1999

2008 5013 C

Caveat

f{ Hama TRUST M SOFT

—
—

1987
SPARK

1997
C130]

2014

SPARK2014 A d a

Formal Verification of Avionics Software Products, Souyris et al., Airbus, FM 2009
Are We There Yet? 20 Years of Industrial Theorem Proving with SPARK, Chapman and Schanda, Altran, ITP 2014

Key Features - Integration

| @ @ GPS - tetris_functional.ads - /Users/moy/spark2014/testsuite/gnatprove/tests/tetris/ - Test p
File Edit Navigate Find Code VCS Build Analyze Debug SPARK View Window Help
a - - g <R A Examine All
E ine All
(0 # E Q-filter = tetris_integrity.ads xamine All Sources [functional.adb tetris_functional.ads
g - B Test 198 ~ function Mo Examine File Dn) return Pilece 1s
° 199 (case A
o v s, 200 when | ProveAll (X = P.X - 1),
/ tetris_flow.adb 201 when | prove All Sources (X = P.X+ 1),
2 } 202 when | _ (Y = P.Y + 1),
= v/ tetris_flow.ads 203 when | ProveFile (D = Turn_Direction (P.D, A)))
O / tetris_functional.adb ;8; Wi;h) Exit Manual Proof .
it e Build-Test-P
v/ tetris_functional.ads .- Show Report u I es rove
v/ tetris_initial.adb 207 ~ procedure D lccess : out Boolean) with

208 Pre = V Clean Proofs

v/ tetris_initial.ads 209 Post = Valid_Configuration; a I I I n th e Sa m e I D ES

v/ tetris_integrity.adb -,1p

Scenario

/ tetris_integrity.ads 211~ procedure Include_Piece_In_Board with
_ 212 Global = (Input = Cur_Piece, In_Out = (Cur_State, Cur_Board)),
-l . 213 Pre = Cur_State = Piece_Blocked and then
214 Valid_Configuration,
215 Post = Cur_State = Board_Before_Clean and then
216 Valid_Configuration;
217 -- transition from state where a piece is falling to its integration in t
218 -- board when it cannot fall anymore.
219
220 ~ procedure Delete_Complete_Lines (Num_Deleted : out Natural) with
221 Global = (Proof_In = Cur_Piece, In_Out = (Cur_State, Cur_Board)),
222 Pre = Cur_State = Board_Before_Clean and then
223 Valid_Configuration,

224 Post = Cur_State = Board_After_Clean and then

~n— o~ P

Tetris_FunctionaI.Is_Empty‘_'Line 5

Key Features - Integration

| @ @ etris_functional.ads - /Users/moy/spark2014/testsuite/gnatprove/tests/tetris/ - Test p
File Edit Navigate Find Code VC Alalyz PARK View Window Help
a - - & é Examine All

Examine All Sources

¢ # iE Q-filter = tetris_integrity.ads {functional.adb tetris_functional.ads
g - B Test 198 ~ tunction Mo Examine File bn) return Piece 1s
° 199 (case A
o R 200 when | Prove All (X > P.X -1),
o / tetris_flow.adb 201 when | prove All Sources (X = P.X + 1),
2) 202 when | _ (Y = P.Y + 1),
= v/ tetris_flow.ads 203 when | Prove File (D = Turn_Direction (P.D, A)))
o / tetris_functional.adb 204 with Exit Manual Proof
. . 205 =
o / tetris_functional.ads 206 Pre Y
E e Show Report)
S v/ tetris_initial.adb 207 ~ procedure D Cloan Proof lccess : out Boolean) with
e ean Proofs
& / tetris_initial.ads 208 Pre =V

" tetris integrity.adh |22 Post = Valid Configuration; CO ntra CtS are Code

procedure Include Piece Ipn Board with

_ npu ur_Pilece, —ou

Pre = Cur_State = Piece_Blocked and then
Valid_Configuration,

Post = Cur_State = Board_Before_Clean and then

Valid_Configuration;

/ tetris_integrity.ads 211~

ate, Cur_Board)),

217 _ ing to its integration in t
218 -- board when it cannot fall anymore.

219

220 ~ procedure Delete_Complete_Lines (Num_Deleted : out Natural) with

221 Global = (Proof_In = Cur_Piece, In_Out = (Cur_State, Cur_Board)),
222 Pre = Cur_State = Board_Before_Clean and then

223 Valid_Configuration,

224 Post = Cur_State = Board_After_Clean and then

~n— o~ P

Tetris_FunctionaI.Is_Empty‘_'Line 6

Key Features - Automation

compiler
correctness /‘
- Ve
Degree of automation .
’
’
’
s %,
PROPERTY vetmore L7 %,
COMPLEXITY complex boolean + complex 7 Q{oﬁ
arith + quantifiers ‘/ %r
nonlinear -Q®
int arith “'/.'_ &
modular arith O % o
ope Yo/ C
+ quantifiers % e %
o (S
O %, %
'5/' °)/ 3
&% 6. Q‘%\
S A (VA
0. > %
boolean tases oo,./ 25
+ linear int arith %
Y
%
/(‘
% USER-PERCEIVED
o > COMPLEXITY

Key Features - Automation

zAda program\

v

SPARK 2014

v

gnatprove

v
[Why3 code]

Why3 VC generator

Why3 logic form ulasj

%l

Alt-Ergo| | CVCa 73 Coq| [lsabelle/HOL

Key Features - Interaction

saturation.adb

tyvpe Saturable Value 1s record
6 Value : Unsigned_16;

Upper_Bound : Unsigned_ 16;
end record;

10 Ounction Saturate (Val : Saturable Value) return Saturable Value
-- Val = (Value => 16383, Upper_Bound => 49152)
L1 ~ with SPARK_Mode,

L2 O Post =>
13 (1f val.val
Path -

saturate'Result = (Value => 49152, Upper_Bound
Val
Satur

= (Value => 16383, Upper_Bound => 49152)

L4 X
L5 (1f val.value > Val.Upper_ Bound then

L6 Saturate'Result.Value = Val.Upper_Bound) Cou nte rexa m ple

L7 1s

l begin
19 O return Val'Update
-- Saturate'Result = (Value => 49152, Upper_Bound => 49152)

20 (Value => Unsigned_16'Max (Val.Value, Val.Upper_Bound));
21 end Saturate;

Stone Level

Strong semantic coding standard
Program respects all the SPARK language legality rules

Enforces safer use of language features:
e Restricted concurrency (Ravenscar profile)
* Expressions and functions without side-effects

Forbids language features that make analysis difficult:
* Unrestricted pointers
* Exception handlers

11

Bronze Level

Initialization and correct data flow
Program passes SPARK flow analysis without violations

Detects programming errors:
* Read of uninitialized data
* Problematic aliasing between parameters
e Data race between concurrent tasks

Checks user specifications:
e Data read or written
* Flow of information from inputs to outputs

12

Silver Level

Absence of run-time errors
Program passes SPARK proof without violations

Detects programming errors:
* Divide by zero
* Array index out of bounds
* Integer, fixed-point and floating-point overflow
* Integer, fixed-point and floating-point range violation
e Explicit exception raised
* Violation of Ceiling Priority Protocol

13

Gold Level

Proof of key integrity properties
Program passes SPARK proof without violations
Checks user specifications:

e Type invariants (weak and strong)

* Preconditions

 Postconditions

Checks correct use of OO wrt Liskov Substitution Principle

14

Platinum Level

Proof of full functional correctness
Program passes SPARK proof without violations
Checks complete user specifications:

e Type invariants (weak and strong)

* Preconditions

 Postconditions

Checks loop termination (loop variant)

15

Software Assurance Levels

.....
.....

Platinum: Full functional
requirements

The default target for critical software
(subject to costs and limitations)

~

Only for a subset of the code subject to specific key
integrity properties (functional,safety, security)

For the largest part of the code as
possible

/

16

Established Practice at Altran UK

Software Integrity Level SPARK Software Assurance Level

DAL SIL Bronze Silver Gold Platinum
A 4
B 3
C 2
D 1
E 0

18

Past Projects at Altran UK

VAl BEEE Bh =)

RUNE (pew BawN
ARe (EBY ENAY
Wiy anEs Rk

C130J: 1996 - now
Bronze (Lockheed

SHOLIS: 1995
DEFSTAN 00-55 SIL4
First Gold

Martin) and Gold (UK
RAF and BAE Systems)

iIFACTS: 2006 - now
Silver (NATS)

19

Adoption Experiments at Thales

Use case 1: porting to new platform Use case 2: demonstrate compliance to LLR
context: 300 klocs radar software context: small numerical function
target: Stone level target: Gold level

Use case 3: identify and fix weakness Use case 4: guarantee safety properties
context: 100s slocs code generator context: 7 klocs command & control
target: Gold level target: Gold level

Adoption Guidelines with Thales

Implementation Guidance
for the Adoption of SPARK

Ada THALES

For every level, we present:
* Benefits, Impact on process, Costs and limitations
e Setup and tool usage
* Violation messages issued by the tool
 Remediation solutions

Guidance was put to test:

* During adoption experiments at Thales
 On example (SPARK tool) presented in last section

21

Stone Level — Large Language Subset

SPARK Mode => On
» Ada types, expressions, statements, subprograms

SPARK Mode => Off
* Ada pointers
* Ada exception handlers

* Ada generics

* Ada object orientation
e Ada concurrency

23

Stone Level — Large Language Subset

SPARK Mode => On
» Ada types, expressions, statements, subprograms

SPARK Mode => Off
* Ada pointers
* Ada exception handlers

work in progress to

Ada generics include safe Rust-like
Ada object orientation pointers in SPARK

Ada concurrency
Ada pointers

24

Bronze/Silver Level — Generation of Contracts

Example: SPARKSkein Skein cryptographic hash algorithm (Chapman, 2011)
target: Silver level

initial version (SPARK 2005) current version (SPARK 2014)

41 non-trivial contracts for effects and 1 — effects and dependencies are
dependencies generated

31 conditions in preconditions and 0 — internal subprograms are inlined
postconditions on internal subprograms

43 conditions in loop invariants 1 — loop frame conditions are generated

23 annotations to prevent combinatorial 0 - no combinatorial explosion
explosion

25

Silver/Gold Level — Combination of Provers

/[cvca)\

WhyML) Proof
GnatZWhYJ* files 4(Why3 obligations

Proof
results

A(z3 i
\(Alt-Ergo)7 :

e o0 o oo o ov or o0 or or o or G eGP E E GG G I GED GED I GED SED GED GED GED GNP GEb P e o oan = o of

GNATprove

I
I
I
I
I
SPARK 2014 I
I
I
I
I

source code
and
contracts
(Y
KCodePeer)

26

Silver/Gold Level — Combination of Provers

Example: Safe bounds on trajectory computation (submitted to VSTTE 2017)
target: Gold level

S, S| s
S 515 £
> = N S| B B
procedure Compute_Speed (N : Frame; VC O < N Oj< O
Fact . Ratio.T: Delta_Speed in -Bound .. Bound 1 3 0

actor -+ Ratio-1; In_Bounds (High_Bound(N)) 1 1

Old_Speed : Float64; In_Bounds (Low_Bound(N)) 0 112
New_Speed : out Float64) F1°at64((F'\{fB‘Q64*(NB‘é“r;d +1'3‘;“)”d foung 42 0

; = oa _Bv) + 1.0) * Boun
with Global => null, Float64(N) * Bound + Bound 44 1125 O
Pre => N < Frame’Last and then = (Float64(N) + 1.0) * Bound
Invariant (N, Old_Speed), Float64(N) * (-Bound) Bound 1 0
. = (Float64(N) + 1.0) * (-Bound)

Post => Invariant (N + 1, New_Speed); T(1) = 1.0 0 0 110 o
Float64(N) + 1.0 = Float64(N + 1) 0 1 1 0
New_Speed >= Float64 (N) * (-Bound) Bound 27 0
New_Speed >= Float64 (N + 1) * (-Bound) 1 0
Delta_Speed := Drag + Factor * G * Frame_Length; New_Speed <= Float64 (N) * Bound + Bound 26 0
New_Speed = 0ld_Speed + Delta_Speed; New_Speed <= Float64 (N + 1) * Bound 1 0

Post-condition 20 0 1

27

Gold/Platinum Level — Auto-Active Verification

Auto-Active = portmanteau of Automatic and interActive

supported by ghost code: contracts, loop invariants,
intermediate assertions, lemma procedures

Example: Functional correctness of red-black trees (NFM 2017)
ghost code used to:
* define model of data used in specifications

target: Platinum level
e prove intermediate lemmas (e.g. for inductive proofs) 9

e provide witness for property (e.g. for transitivity relation)

28

Gold/Platinum Level — Auto-Active Verification

1200

1000

800

600

400

200

Binary Trees

Search Trees

Ghost
M Contract
M Code

Red-black Trees

29

Avionics — DO-178C and DO-333

e Accuracy and consistency \\

o Compatibility with the target computer _ __ e Compliance
o Verifiability 7 * Traceability /

 Conformance to standards /

e Algorithm accuracy ~

e Consistency / \ * Accuracy and
« Compatibility with the target computer // \\ Compatibility with the target computer
* Verifiability i » Compliance | | ® Verifiability
* Conformance to standards | * Compliance o Traceability | * Conformance to standards
* Partitioning integrity |

|_* Algorithm accuracy

/
|
M Low-level :
requirements ! * Compliance
N * Robustness
N ;
i _ « Compliance j
* Coggpliance » Traceability ‘ ;
\ / . /
\ / ! /
 Verifiabili source cade * Compliance
v/ * Robustness |
* Conformance to standards | \ —
* Accuracy and consistency « Trace ability\l
/ / >l

e Completeness and correctness | L Dev.elopme.nt. activity
\ — — — Review activity
Note: Requirements include

* Compatibility with the target computer(derived requirements
iv Ui

AdaCore Technologies for

DO0-178C / ED-12C

P

AdaCore Technologies
for DO-178C / ED-12C

https://www.adacore.com/books/do-178c-tech

31

Railway — EN 50128

D.2 Analyzable Programs

D.4 Boundary Value Analysis

D.10 Data Flow Analysis

D.14 Defensive Programming

D.18 Input Partition Testing

D.24 Failure Assertion Programming

D.28 Formal Methods

AdaCore Technologies for

) CENELEC
D.34 Interface Testing EN 50128:2011

D.35 Language Subset
D.38 Modular Approach
D.49 Strong Typing

D.53 Structured Programming

D.54 Suitable Programing Languages

AdaCore Technologies
for CENELEC EN 50128:2011

https://www.adacore.com/books/cenelec-en-50128-2011

32

Automotive — ISO 26262

Table 1 — Topics to be covered by modelling and coding guidelines
Table 2 — Notations for software architectural design

Table 6 — Methods for the verification of the software architectural
design

Table 9 — Methods for the verification of software unit design and working on a booklet
AdaCore Technologies

implementation
for 1SO 26262

Table 11 — Methods for deriving test cases for software unit testing
Table 13 — Methods for software integration testing

Table 14 — Methods for deriving test cases for software integration
testing

33

Levels of Software Assurance

From strong semantic coding standard to full functional correctness
Every level implicitly builds on the lower levels

Lower levels require lower costs/efforts

Good match from DAL/SIL to Bronze-Silver-Gold-Platinum

Good match to certification objectives in transport

Adoption greatly facilitated by detailed level-specific guidance

35

SPARK Resources

SPARK toolset
http://www.adacore.com/sparkpro http:// www.adacore.com/community

SPARK adoption guidance
www.adacore.com/knowledge/technical-papers/implementation-guidance-spark

SPARK blog and resources (User’s Guide)
http://www.spark-2014.org

SPARK online training
http://u.adacore.com

36

