Présente par Yannick Moy



SPARK — Flow Analysis

procedure Stabilize (Mode : 1n Mode T;

Success : out Boolean)

with Global => (Input => (Accel, Giro),
In Out => Rotors);

Program
implements
specification

Specification Flow

of effects analysis




SPARK — Proof

procedure Stabilize (Mode : 1n Mode T;
Success : out Boolean)
with Pre => Mode /= Off,
Post => (1f Success then
Delta Change (Rotors'Old, Rotors));

Program
implements
specification

Specification

of properties




Formal Program Verification
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Key Features - Integration

| @ @ GPS - tetris_functional.ads - /Users/moy/spark2014/testsuite/gnatprove/tests/tetris/ - Test p
File Edit Navigate Find Code VCS Build Analyze Debug SPARK View Window Help
a - - g <R A Examine All
E ine All
(0 # E Q-filter = tetris_integrity.ads xamine All Sources [functional.adb tetris_functional.ads
g - B Test 198 ~ function Mo  Examine File Dn) return Pilece 1s
° 199 (case A
o v s, 200 when |  ProveAll (X = P.X - 1),
/ tetris_flow.adb 201 when | prove All Sources (X = P.X+ 1),
2 } 202 when | _ (Y = P.Y + 1),
= v/ tetris_flow.ads 203 when | ProveFile (D = Turn_Direction (P.D, A)))
O / tetris_functional.adb ;8; Wi;h ) Exit Manual Proof .
it e Build-Test-P
v/ tetris_functional.ads .- Show Report u I es rove
v/ tetris_initial.adb 207 ~ procedure D lccess : out Boolean) with

208 Pre = V Clean Proofs

v/ tetris_initial.ads 209 Post = Valid_Configuration; a I I I n th e Sa m e I D ES

v/ tetris_integrity.adb -,1p

Scenario

/ tetris_integrity.ads 211~ procedure Include_Piece_In_Board with
_ 212 Global = (Input = Cur_Piece, In_Out = (Cur_State, Cur_Board)),
-l . 213 Pre = Cur_State = Piece_Blocked and then
214 Valid_Configuration,
215 Post = Cur_State = Board_Before_Clean and then
216 Valid_Configuration;
217 -- transition from state where a piece is falling to its integration in t
218 --  board when it cannot fall anymore.
219
220 ~ procedure Delete_Complete_Lines (Num_Deleted : out Natural) with
221 Global = (Proof_In = Cur_Piece, In_Out = (Cur_State, Cur_Board)),
222 Pre = Cur_State = Board_Before_Clean and then
223 Valid_Configuration,

224 Post = Cur_State = Board_After_Clean and then

~n— o~ P

Tetris_FunctionaI.Is_Empty‘_'Line 5



Key Features - Integration
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o R 200 when |  Prove All (X > P.X -1),
o / tetris_flow.adb 201 when | prove All Sources (X = P.X + 1),
2 ) 202 when | _ (Y = P.Y + 1),
= v/ tetris_flow.ads 203 when | Prove File (D = Turn_Direction (P.D, A)))
o / tetris_functional.adb 204 with Exit Manual Proof
. . 205 =
o / tetris_functional.ads 206 Pre Y
E e Show Report )
S v/ tetris_initial.adb 207 ~ procedure D Cloan Proof lccess : out Boolean) with
e ean Proofs
& / tetris_initial.ads 208 Pre =V

" tetris integrity.adh |22 Post = Valid Configuration; CO ntra CtS are Code

procedure Include Piece Ipn Board with

_ npu ur_Pilece, —ou

Pre = Cur_State = Piece_Blocked and then
Valid_Configuration,

Post = Cur_State = Board_Before_Clean and then

Valid_Configuration;

/ tetris_integrity.ads 211~

ate, Cur_Board)),

217 _ ing to its integration in t
218 --  board when it cannot fall anymore.

219

220 ~ procedure Delete_Complete_Lines (Num_Deleted : out Natural) with

221 Global = (Proof_In = Cur_Piece, In_Out = (Cur_State, Cur_Board)),
222 Pre = Cur_State = Board_Before_Clean and then

223 Valid_Configuration,

224 Post = Cur_State = Board_After_Clean and then

~n— o~ P

Tetris_FunctionaI.Is_Empty‘_'Line 6



Key Features - Automation
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Key Features - Automation
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Key Features - Interaction

saturation.adb

tyvpe Saturable Value 1s record
6 Value : Unsigned_16;

Upper_Bound : Unsigned_ 16;
end record;

10 Ounction Saturate (Val : Saturable Value) return Saturable Value
-- Val = (Value => 16383, Upper_Bound => 49152)
L1 ~ with SPARK_Mode,

L2 O Post =>
13 (1f val.val
Path -

saturate'Result = (Value => 49152, Upper_Bound
Val
Satur

= (Value => 16383, Upper_Bound => 49152)

L4 X
L5 (1f val.value > Val.Upper_ Bound then

L6 Saturate'Result.Value = Val.Upper_Bound) Cou nte rexa m ple

L7 1s

l begin
19 O return Val'Update
-- Saturate'Result = (Value => 49152, Upper_Bound => 49152)

20 (Value => Unsigned_16'Max (Val.Value, Val.Upper_Bound));
21 end Saturate;






Stone Level

Strong semantic coding standard
Program respects all the SPARK language legality rules

Enforces safer use of language features:
e Restricted concurrency (Ravenscar profile)
* Expressions and functions without side-effects

Forbids language features that make analysis difficult:
* Unrestricted pointers
* Exception handlers

11



Bronze Level

Initialization and correct data flow
Program passes SPARK flow analysis without violations

Detects programming errors:
* Read of uninitialized data
* Problematic aliasing between parameters
e Data race between concurrent tasks

Checks user specifications:
e Data read or written
* Flow of information from inputs to outputs
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Silver Level

Absence of run-time errors
Program passes SPARK proof without violations

Detects programming errors:
* Divide by zero
* Array index out of bounds
* Integer, fixed-point and floating-point overflow
* Integer, fixed-point and floating-point range violation
e Explicit exception raised
* Violation of Ceiling Priority Protocol
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Gold Level

Proof of key integrity properties
Program passes SPARK proof without violations
Checks user specifications:

e Type invariants (weak and strong)

* Preconditions

 Postconditions

Checks correct use of OO wrt Liskov Substitution Principle
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Platinum Level

Proof of full functional correctness
Program passes SPARK proof without violations
Checks complete user specifications:

e Type invariants (weak and strong)

* Preconditions

 Postconditions

Checks loop termination (loop variant)
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Software Assurance Levels

.....
.....

Platinum: Full functional
requirements

The default target for critical software
(subject to costs and limitations)

~

Only for a subset of the code subject to specific key
integrity properties (functional,safety, security)

For the largest part of the code as
possible

/
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Established Practice at Altran UK

Software Integrity Level SPARK Software Assurance Level

DAL SIL Bronze Silver Gold Platinum
A 4
B 3
C 2
D 1
E 0
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Past Projects at Altran UK
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C130J: 1996 - now
Bronze (Lockheed

SHOLIS: 1995
DEFSTAN 00-55 SIL4
First Gold

Martin) and Gold (UK
RAF and BAE Systems)

iIFACTS: 2006 - now
Silver (NATS)
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Adoption Experiments at Thales

Use case 1: porting to new platform Use case 2: demonstrate compliance to LLR
context: 300 klocs radar software context: small numerical function
target: Stone level target: Gold level

Use case 3: identify and fix weakness Use case 4: guarantee safety properties
context:  100s slocs code generator context: 7 klocs command & control
target: Gold level target: Gold level




Adoption Guidelines with Thales

Implementation Guidance
for the Adoption of SPARK

Ada THALES

For every level, we present:
* Benefits, Impact on process, Costs and limitations
e Setup and tool usage
* Violation messages issued by the tool
 Remediation solutions

Guidance was put to test:

* During adoption experiments at Thales
 On example (SPARK tool) presented in last section
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Stone Level — Large Language Subset

SPARK Mode => On
» Ada types, expressions, statements, subprograms

SPARK Mode => Off
* Ada pointers
* Ada exception handlers

* Ada generics

* Ada object orientation
e Ada concurrency

23



Stone Level — Large Language Subset

SPARK Mode => On
» Ada types, expressions, statements, subprograms

SPARK Mode => Off
* Ada pointers
* Ada exception handlers

work in progress to

Ada generics include safe Rust-like
Ada object orientation pointers in SPARK

Ada concurrency
Ada pointers
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Bronze/Silver Level — Generation of Contracts

Example: SPARKSkein Skein cryptographic hash algorithm (Chapman, 2011)
target: Silver level

initial version (SPARK 2005) current version (SPARK 2014)

41 non-trivial contracts for effects and 1 — effects and dependencies are
dependencies generated

31 conditions in preconditions and 0 — internal subprograms are inlined
postconditions on internal subprograms

43 conditions in loop invariants 1 — loop frame conditions are generated

23 annotations to prevent combinatorial 0 - no combinatorial explosion
explosion
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Silver/Gold Level — Combination of Provers
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Silver/Gold Level — Combination of Provers

Example: Safe bounds on trajectory computation (submitted to VSTTE 2017)
target: Gold level

S, S| s
S 515 £
> = N S| B B
procedure Compute_Speed (N : Frame; VC O < N Oj< O
Fact . Ratio.T: Delta_Speed in -Bound .. Bound 1 3 0

actor -+ Ratio-1; In_Bounds (High_Bound(N)) 1 1

Old_Speed : Float64; In_Bounds (Low_Bound(N)) 0 112
New_Speed : out Float64) F1°at64((F'\{fB‘Q64*(NB‘é“r;d +1'3‘;“)”d foung 42 0

; = oa _Bv) + 1.0) * Boun
with Global => null, Float64(N) * Bound + Bound 44 1125 O
Pre => N < Frame’Last and then = (Float64(N) + 1.0) * Bound
Invariant (N, Old_Speed), Float64(N) * (-Bound) Bound 1 0
. = (Float64(N) + 1.0) * (-Bound)

Post => Invariant (N + 1, New_Speed); T(1) = 1.0 0 0 110 o
Float64(N) + 1.0 = Float64(N + 1) 0 1 1 0
New_Speed >= Float64 (N) * (-Bound) Bound 27 0
New_Speed >= Float64 (N + 1) * (-Bound) 1 0
Delta_Speed := Drag + Factor * G * Frame_Length; New_Speed <= Float64 (N) * Bound + Bound 26 0
New_Speed = 0ld_Speed + Delta_Speed; New_Speed <= Float64 (N + 1) * Bound 1 0

Post-condition 20 0 1
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Gold/Platinum Level — Auto-Active Verification

Auto-Active = portmanteau of Automatic and interActive

supported by ghost code: contracts, loop invariants,
intermediate assertions, lemma procedures

Example: Functional correctness of red-black trees (NFM 2017)
ghost code used to:
* define model of data used in specifications

target: Platinum level
e prove intermediate lemmas (e.g. for inductive proofs) 9

e provide witness for property (e.g. for transitivity relation)
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Gold/Platinum Level — Auto-Active Verification
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Avionics — DO-178C and DO-333

e Accuracy and consistency \\

o Compatibility with the target computer _ __ e Compliance
o Verifiability 7 * Traceability /

 Conformance to standards /

e Algorithm accuracy ~

e Consistency  / \ * Accuracy and
« Compatibility with the target computer // \\  Compatibility with the target computer
* Verifiability i » Compliance | | ® Verifiability
* Conformance to standards | * Compliance o Traceability | * Conformance to standards
* Partitioning integrity |

|_* Algorithm accuracy

/
|
M Low-level :
requirements ! * Compliance
N * Robustness
N ;
i _ « Compliance j
* Coggpliance » Traceability ‘ ;
\ / . /
\ / ! /
 Verifiabili source cade * Compliance
v/ * Robustness |
* Conformance to standards | \ —
* Accuracy and consistency « Trace ability\l
/ / >l

e Completeness and correctness | L Dev.elopme.nt. activity
\ — — — Review activity
Note: Requirements include

* Compatibility with the target computer( derived requirements
iv Ui

AdaCore Technologies for

DO0-178C / ED-12C

P

AdaCore Technologies
for DO-178C / ED-12C

https://www.adacore.com/books/do-178c-tech

31



Railway — EN 50128

D.2 Analyzable Programs

D.4 Boundary Value Analysis

D.10 Data Flow Analysis

D.14 Defensive Programming

D.18 Input Partition Testing

D.24 Failure Assertion Programming

D.28 Formal Methods

AdaCore Technologies for

) CENELEC
D.34 Interface Testing EN 50128:2011

D.35 Language Subset
D.38 Modular Approach
D.49 Strong Typing

D.53 Structured Programming

D.54 Suitable Programing Languages

AdaCore Technologies
for CENELEC EN 50128:2011

https://www.adacore.com/books/cenelec-en-50128-2011
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Automotive — ISO 26262

Table 1 — Topics to be covered by modelling and coding guidelines
Table 2 — Notations for software architectural design

Table 6 — Methods for the verification of the software architectural
design

Table 9 — Methods for the verification of software unit design and working on a booklet
AdaCore Technologies

implementation
for 1SO 26262

Table 11 — Methods for deriving test cases for software unit testing
Table 13 — Methods for software integration testing

Table 14 — Methods for deriving test cases for software integration
testing
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Levels of Software Assurance

From strong semantic coding standard to full functional correctness
Every level implicitly builds on the lower levels

Lower levels require lower costs/efforts

Good match from DAL/SIL to Bronze-Silver-Gold-Platinum

Good match to certification objectives in transport

Adoption greatly facilitated by detailed level-specific guidance
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SPARK Resources

SPARK toolset
http://www.adacore.com/sparkpro http:// www.adacore.com/community

SPARK adoption guidance
www.adacore.com/knowledge/technical-papers/implementation-guidance-spark

SPARK blog and resources (User’s Guide)
http://www.spark-2014.org

SPARK online training
http://u.adacore.com
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